Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterization of the impact of glutaredoxin-2 (GRX2) deficiency on superoxide/hydrogen peroxide release from cardiac and liver mitochondria.

Identifieur interne : 000283 ( Main/Exploration ); précédent : 000282; suivant : 000284

Characterization of the impact of glutaredoxin-2 (GRX2) deficiency on superoxide/hydrogen peroxide release from cardiac and liver mitochondria.

Auteurs : Julia Chalker [Canada] ; Danielle Gardiner [Canada] ; Nidhi Kuksal [Canada] ; Ryan J. Mailloux [Canada]

Source :

RBID : pubmed:29274570

Descripteurs français

English descriptors

Abstract

Mitochondria are critical sources of hydrogen peroxide (H2O2), an important secondary messenger in mammalian cells. Recent work has shown that O2•-/H2O2 emission from individual sites of production in mitochondria is regulated by protein S-glutathionylation. Here, we conducted the first examination of O2•-/H2O2 release rates from cardiac and liver mitochondria isolated from mice deficient for glutaredoxin-2 (GRX2), a matrix-associated thiol oxidoreductase that facilitates the S-glutathionylation and deglutathionylation of proteins. Liver mitochondria isolated from mice heterozygous (GRX2+/-) and homozygous (GRX2-/-) for glutaredoxin-2 displayed a significant decrease in O2•-/H2O2 release when oxidizing pyruvate or 2-oxoglutarate. The genetic deletion of the Grx2 gene was associated with increased protein expression of pyruvate dehydrogenase (PDH) but not 2-oxoglutarate dehydrogenase (OGDH). By contrast, O2•-/H2O2 production was augmented in cardiac mitochondria from GRX2+/- and GRX2-/- mice metabolizing pyruvate or 2-oxoglutarate which was associated with decreased PDH and OGDH protein levels. ROS production was augmented in liver and cardiac mitochondria metabolizing succinate. Inhibitor studies revealed that OGDH and Complex III served as high capacity ROS release sites in liver mitochondria. By contrast, Complex I and Complex III were found to be the chief O2•-/H2O2 emitters in cardiac mitochondria. These findings identify an essential role for GRX2 in regulating O2•-/H2O2 release from mitochondria in liver and cardiac tissue. Our results demonstrate that the GRX2-mediated regulation of O2•-/H2O2 release through the S-glutathionylation of mitochondrial proteins may play an integral role in controlling cellular ROS signaling.

DOI: 10.1016/j.redox.2017.12.006
PubMed: 29274570
PubMed Central: PMC5773472


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Characterization of the impact of glutaredoxin-2 (GRX2) deficiency on superoxide/hydrogen peroxide release from cardiac and liver mitochondria.</title>
<author>
<name sortKey="Chalker, Julia" sort="Chalker, Julia" uniqKey="Chalker J" first="Julia" last="Chalker">Julia Chalker</name>
<affiliation wicri:level="1">
<nlm:affiliation>Memorial University of Newfoundland, Department of Biochemistry, St. John's, Newfoundland, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Memorial University of Newfoundland, Department of Biochemistry, St. John's, Newfoundland</wicri:regionArea>
<wicri:noRegion>Newfoundland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gardiner, Danielle" sort="Gardiner, Danielle" uniqKey="Gardiner D" first="Danielle" last="Gardiner">Danielle Gardiner</name>
<affiliation wicri:level="1">
<nlm:affiliation>Memorial University of Newfoundland, Department of Biochemistry, St. John's, Newfoundland, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Memorial University of Newfoundland, Department of Biochemistry, St. John's, Newfoundland</wicri:regionArea>
<wicri:noRegion>Newfoundland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kuksal, Nidhi" sort="Kuksal, Nidhi" uniqKey="Kuksal N" first="Nidhi" last="Kuksal">Nidhi Kuksal</name>
<affiliation wicri:level="1">
<nlm:affiliation>Memorial University of Newfoundland, Department of Biochemistry, St. John's, Newfoundland, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Memorial University of Newfoundland, Department of Biochemistry, St. John's, Newfoundland</wicri:regionArea>
<wicri:noRegion>Newfoundland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mailloux, Ryan J" sort="Mailloux, Ryan J" uniqKey="Mailloux R" first="Ryan J" last="Mailloux">Ryan J. Mailloux</name>
<affiliation wicri:level="1">
<nlm:affiliation>Memorial University of Newfoundland, Department of Biochemistry, St. John's, Newfoundland, Canada. Electronic address: rjmailloux@mun.ca.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Memorial University of Newfoundland, Department of Biochemistry, St. John's, Newfoundland</wicri:regionArea>
<wicri:noRegion>Newfoundland</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29274570</idno>
<idno type="pmid">29274570</idno>
<idno type="doi">10.1016/j.redox.2017.12.006</idno>
<idno type="pmc">PMC5773472</idno>
<idno type="wicri:Area/Main/Corpus">000275</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000275</idno>
<idno type="wicri:Area/Main/Curation">000275</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000275</idno>
<idno type="wicri:Area/Main/Exploration">000275</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Characterization of the impact of glutaredoxin-2 (GRX2) deficiency on superoxide/hydrogen peroxide release from cardiac and liver mitochondria.</title>
<author>
<name sortKey="Chalker, Julia" sort="Chalker, Julia" uniqKey="Chalker J" first="Julia" last="Chalker">Julia Chalker</name>
<affiliation wicri:level="1">
<nlm:affiliation>Memorial University of Newfoundland, Department of Biochemistry, St. John's, Newfoundland, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Memorial University of Newfoundland, Department of Biochemistry, St. John's, Newfoundland</wicri:regionArea>
<wicri:noRegion>Newfoundland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gardiner, Danielle" sort="Gardiner, Danielle" uniqKey="Gardiner D" first="Danielle" last="Gardiner">Danielle Gardiner</name>
<affiliation wicri:level="1">
<nlm:affiliation>Memorial University of Newfoundland, Department of Biochemistry, St. John's, Newfoundland, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Memorial University of Newfoundland, Department of Biochemistry, St. John's, Newfoundland</wicri:regionArea>
<wicri:noRegion>Newfoundland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kuksal, Nidhi" sort="Kuksal, Nidhi" uniqKey="Kuksal N" first="Nidhi" last="Kuksal">Nidhi Kuksal</name>
<affiliation wicri:level="1">
<nlm:affiliation>Memorial University of Newfoundland, Department of Biochemistry, St. John's, Newfoundland, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Memorial University of Newfoundland, Department of Biochemistry, St. John's, Newfoundland</wicri:regionArea>
<wicri:noRegion>Newfoundland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mailloux, Ryan J" sort="Mailloux, Ryan J" uniqKey="Mailloux R" first="Ryan J" last="Mailloux">Ryan J. Mailloux</name>
<affiliation wicri:level="1">
<nlm:affiliation>Memorial University of Newfoundland, Department of Biochemistry, St. John's, Newfoundland, Canada. Electronic address: rjmailloux@mun.ca.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Memorial University of Newfoundland, Department of Biochemistry, St. John's, Newfoundland</wicri:regionArea>
<wicri:noRegion>Newfoundland</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Redox biology</title>
<idno type="eISSN">2213-2317</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Electron Transport Complex I (genetics)</term>
<term>Electron Transport Complex I (metabolism)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Glutathione (metabolism)</term>
<term>Hydrogen Peroxide (metabolism)</term>
<term>Ketoglutarate Dehydrogenase Complex (genetics)</term>
<term>Ketoglutarate Dehydrogenase Complex (metabolism)</term>
<term>Mice (MeSH)</term>
<term>Mitochondria, Heart (genetics)</term>
<term>Mitochondria, Heart (metabolism)</term>
<term>Mitochondria, Liver (genetics)</term>
<term>Mitochondria, Liver (metabolism)</term>
<term>Myocardium (MeSH)</term>
<term>Pyruvate Dehydrogenase (Lipoamide) (genetics)</term>
<term>Pyruvate Dehydrogenase (Lipoamide) (metabolism)</term>
<term>Succinic Acid (metabolism)</term>
<term>Superoxides (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide succinique (métabolisme)</term>
<term>Animaux (MeSH)</term>
<term>Complexe I de la chaîne respiratoire (génétique)</term>
<term>Complexe I de la chaîne respiratoire (métabolisme)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Glutathion (métabolisme)</term>
<term>Ketoglutarate dehydrogenase complex (génétique)</term>
<term>Ketoglutarate dehydrogenase complex (métabolisme)</term>
<term>Mitochondries du foie (génétique)</term>
<term>Mitochondries du foie (métabolisme)</term>
<term>Mitochondries du myocarde (génétique)</term>
<term>Mitochondries du myocarde (métabolisme)</term>
<term>Myocarde (MeSH)</term>
<term>Peroxyde d'hydrogène (métabolisme)</term>
<term>Pyruvate dehydrogenase (lipoamide) (génétique)</term>
<term>Pyruvate dehydrogenase (lipoamide) (métabolisme)</term>
<term>Souris (MeSH)</term>
<term>Superoxydes (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Electron Transport Complex I</term>
<term>Glutaredoxins</term>
<term>Ketoglutarate Dehydrogenase Complex</term>
<term>Pyruvate Dehydrogenase (Lipoamide)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Electron Transport Complex I</term>
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Hydrogen Peroxide</term>
<term>Ketoglutarate Dehydrogenase Complex</term>
<term>Pyruvate Dehydrogenase (Lipoamide)</term>
<term>Succinic Acid</term>
<term>Superoxides</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Mitochondria, Heart</term>
<term>Mitochondria, Liver</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Complexe I de la chaîne respiratoire</term>
<term>Glutarédoxines</term>
<term>Ketoglutarate dehydrogenase complex</term>
<term>Mitochondries du foie</term>
<term>Mitochondries du myocarde</term>
<term>Pyruvate dehydrogenase (lipoamide)</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mitochondria, Heart</term>
<term>Mitochondria, Liver</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide succinique</term>
<term>Complexe I de la chaîne respiratoire</term>
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Ketoglutarate dehydrogenase complex</term>
<term>Mitochondries du foie</term>
<term>Mitochondries du myocarde</term>
<term>Peroxyde d'hydrogène</term>
<term>Pyruvate dehydrogenase (lipoamide)</term>
<term>Superoxydes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Mice</term>
<term>Myocardium</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Myocarde</term>
<term>Souris</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mitochondria are critical sources of hydrogen peroxide (H
<sub>2</sub>
O
<sub>2</sub>
), an important secondary messenger in mammalian cells. Recent work has shown that O
<sub>2</sub>
<sup>•-</sup>
/H
<sub>2</sub>
O
<sub>2</sub>
emission from individual sites of production in mitochondria is regulated by protein S-glutathionylation. Here, we conducted the first examination of O
<sub>2</sub>
<sup>•-</sup>
/H
<sub>2</sub>
O
<sub>2</sub>
release rates from cardiac and liver mitochondria isolated from mice deficient for glutaredoxin-2 (GRX2), a matrix-associated thiol oxidoreductase that facilitates the S-glutathionylation and deglutathionylation of proteins. Liver mitochondria isolated from mice heterozygous (GRX2+/-) and homozygous (GRX2-/-) for glutaredoxin-2 displayed a significant decrease in O
<sub>2</sub>
<sup>•-</sup>
/H
<sub>2</sub>
O
<sub>2</sub>
release when oxidizing pyruvate or 2-oxoglutarate. The genetic deletion of the Grx2 gene was associated with increased protein expression of pyruvate dehydrogenase (PDH) but not 2-oxoglutarate dehydrogenase (OGDH). By contrast, O
<sub>2</sub>
<sup>•-</sup>
/H
<sub>2</sub>
O
<sub>2</sub>
production was augmented in cardiac mitochondria from GRX2+/- and GRX2-/- mice metabolizing pyruvate or 2-oxoglutarate which was associated with decreased PDH and OGDH protein levels. ROS production was augmented in liver and cardiac mitochondria metabolizing succinate. Inhibitor studies revealed that OGDH and Complex III served as high capacity ROS release sites in liver mitochondria. By contrast, Complex I and Complex III were found to be the chief O
<sub>2</sub>
<sup>•-</sup>
/H
<sub>2</sub>
O
<sub>2</sub>
emitters in cardiac mitochondria. These findings identify an essential role for GRX2 in regulating O
<sub>2</sub>
<sup>•-</sup>
/H
<sub>2</sub>
O
<sub>2</sub>
release from mitochondria in liver and cardiac tissue. Our results demonstrate that the GRX2-mediated regulation of O
<sub>2</sub>
<sup>•-</sup>
/H
<sub>2</sub>
O
<sub>2</sub>
release through the S-glutathionylation of mitochondrial proteins may play an integral role in controlling cellular ROS signaling.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29274570</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>10</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">2213-2317</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<PubDate>
<Year>2018</Year>
<Month>05</Month>
</PubDate>
</JournalIssue>
<Title>Redox biology</Title>
<ISOAbbreviation>Redox Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Characterization of the impact of glutaredoxin-2 (GRX2) deficiency on superoxide/hydrogen peroxide release from cardiac and liver mitochondria.</ArticleTitle>
<Pagination>
<MedlinePgn>216-227</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S2213-2317(17)30837-6</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.redox.2017.12.006</ELocationID>
<Abstract>
<AbstractText>Mitochondria are critical sources of hydrogen peroxide (H
<sub>2</sub>
O
<sub>2</sub>
), an important secondary messenger in mammalian cells. Recent work has shown that O
<sub>2</sub>
<sup>•-</sup>
/H
<sub>2</sub>
O
<sub>2</sub>
emission from individual sites of production in mitochondria is regulated by protein S-glutathionylation. Here, we conducted the first examination of O
<sub>2</sub>
<sup>•-</sup>
/H
<sub>2</sub>
O
<sub>2</sub>
release rates from cardiac and liver mitochondria isolated from mice deficient for glutaredoxin-2 (GRX2), a matrix-associated thiol oxidoreductase that facilitates the S-glutathionylation and deglutathionylation of proteins. Liver mitochondria isolated from mice heterozygous (GRX2+/-) and homozygous (GRX2-/-) for glutaredoxin-2 displayed a significant decrease in O
<sub>2</sub>
<sup>•-</sup>
/H
<sub>2</sub>
O
<sub>2</sub>
release when oxidizing pyruvate or 2-oxoglutarate. The genetic deletion of the Grx2 gene was associated with increased protein expression of pyruvate dehydrogenase (PDH) but not 2-oxoglutarate dehydrogenase (OGDH). By contrast, O
<sub>2</sub>
<sup>•-</sup>
/H
<sub>2</sub>
O
<sub>2</sub>
production was augmented in cardiac mitochondria from GRX2+/- and GRX2-/- mice metabolizing pyruvate or 2-oxoglutarate which was associated with decreased PDH and OGDH protein levels. ROS production was augmented in liver and cardiac mitochondria metabolizing succinate. Inhibitor studies revealed that OGDH and Complex III served as high capacity ROS release sites in liver mitochondria. By contrast, Complex I and Complex III were found to be the chief O
<sub>2</sub>
<sup>•-</sup>
/H
<sub>2</sub>
O
<sub>2</sub>
emitters in cardiac mitochondria. These findings identify an essential role for GRX2 in regulating O
<sub>2</sub>
<sup>•-</sup>
/H
<sub>2</sub>
O
<sub>2</sub>
release from mitochondria in liver and cardiac tissue. Our results demonstrate that the GRX2-mediated regulation of O
<sub>2</sub>
<sup>•-</sup>
/H
<sub>2</sub>
O
<sub>2</sub>
release through the S-glutathionylation of mitochondrial proteins may play an integral role in controlling cellular ROS signaling.</AbstractText>
<CopyrightInformation>Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chalker</LastName>
<ForeName>Julia</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Memorial University of Newfoundland, Department of Biochemistry, St. John's, Newfoundland, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gardiner</LastName>
<ForeName>Danielle</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Memorial University of Newfoundland, Department of Biochemistry, St. John's, Newfoundland, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kuksal</LastName>
<ForeName>Nidhi</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Memorial University of Newfoundland, Department of Biochemistry, St. John's, Newfoundland, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mailloux</LastName>
<ForeName>Ryan J</ForeName>
<Initials>RJ</Initials>
<AffiliationInfo>
<Affiliation>Memorial University of Newfoundland, Department of Biochemistry, St. John's, Newfoundland, Canada. Electronic address: rjmailloux@mun.ca.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>12</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Redox Biol</MedlineTA>
<NlmUniqueID>101605639</NlmUniqueID>
<ISSNLinking>2213-2317</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C516009">Glrx2 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>11062-77-4</RegistryNumber>
<NameOfSubstance UI="D013481">Superoxides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>AB6MNQ6J6L</RegistryNumber>
<NameOfSubstance UI="D019802">Succinic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.2.4.1</RegistryNumber>
<NameOfSubstance UI="D030481">Pyruvate Dehydrogenase (Lipoamide)</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.2.4.1</RegistryNumber>
<NameOfSubstance UI="C065640">pyruvate dehydrogenase E1alpha subunit</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.2.4.2</RegistryNumber>
<NameOfSubstance UI="D007655">Ketoglutarate Dehydrogenase Complex</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 7.1.1.2</RegistryNumber>
<NameOfSubstance UI="D042967">Electron Transport Complex I</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042967" MajorTopicYN="N">Electron Transport Complex I</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007655" MajorTopicYN="N">Ketoglutarate Dehydrogenase Complex</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008929" MajorTopicYN="N">Mitochondria, Heart</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008930" MajorTopicYN="N">Mitochondria, Liver</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009206" MajorTopicYN="N">Myocardium</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030481" MajorTopicYN="N">Pyruvate Dehydrogenase (Lipoamide)</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019802" MajorTopicYN="N">Succinic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013481" MajorTopicYN="N">Superoxides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>11</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2017</Year>
<Month>12</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>12</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>12</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>12</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29274570</ArticleId>
<ArticleId IdType="pii">S2213-2317(17)30837-6</ArticleId>
<ArticleId IdType="doi">10.1016/j.redox.2017.12.006</ArticleId>
<ArticleId IdType="pmc">PMC5773472</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Redox Biol. 2018 Apr;14 :509-521</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29101900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2017 Apr;11:613-619</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28110218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2014 Jan 10;2:358-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24563853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2011 Dec 1;51(11):2108-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21983434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 12;279(46):47939-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15347644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 May 30;278(22):19603-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12649289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol In Vitro. 2015 Aug;29(5):953-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25835517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bioenerg Biomembr. 1997 Feb;29(1):89-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9067806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Mar 22;288(12 ):8365-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23335511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2015;4:381-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25744690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2012 Oct;13(10):909-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22945481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2017 May 15;3:17071</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28504660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Res. 2011 Jan;45(1):29-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21110783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2013 Aug;61:161-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23567190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2017 Aug;591(16):2426-2438</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28771687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2017 Jun 20;86:715-748</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28441057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2014 Nov 20;515(7527):431-435</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25383517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Mar 21;289(12):8312-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24515115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2017 May;106:302-314</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28242228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2001 Mar 2;281(3):645-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11237706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2007 Aug 01;2(8):e690</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17668068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Dec 26;289(52):36125-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25362663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 May 23;289(21):14812-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24727547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2011 Sep 16;109(7):750-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21817160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2012 Jan;26(1):363-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21940996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2016 Dec;139(5):823-838</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27580471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2016 Aug;97:501-512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27394173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2016 Aug;8:285-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26928132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gastroenterology. 1998 Dec;115(6):1494-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9834277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2013 Dec;65:1201-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24056031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Sep 5;283(36):24801-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18611857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Med. 2010 Jul;26(1):95-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20514427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2004 Sep 8;24(36):7779-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15356189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Feb;1793(2):427-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19038292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2015 Sep 20;23(9):734-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25891126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2013 Oct 17;14(10):20845-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24141185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20057-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24277839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Jan 8;47(1):473-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18081316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2017 Aug;1861(8):1960-1969</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28506882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometals. 2007 Apr;20(2):165-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16900398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jul 27;282(30):22040-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17525152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2017 Mar 15;474(7):1175-1193</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28167699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2009 Jan 1;417(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19061483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Pharmacol Toxicol. 2017 Jan 6;57:535-565</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27860548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2007 Nov;9(11):2027-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17845131</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<country name="Canada">
<noRegion>
<name sortKey="Chalker, Julia" sort="Chalker, Julia" uniqKey="Chalker J" first="Julia" last="Chalker">Julia Chalker</name>
</noRegion>
<name sortKey="Gardiner, Danielle" sort="Gardiner, Danielle" uniqKey="Gardiner D" first="Danielle" last="Gardiner">Danielle Gardiner</name>
<name sortKey="Kuksal, Nidhi" sort="Kuksal, Nidhi" uniqKey="Kuksal N" first="Nidhi" last="Kuksal">Nidhi Kuksal</name>
<name sortKey="Mailloux, Ryan J" sort="Mailloux, Ryan J" uniqKey="Mailloux R" first="Ryan J" last="Mailloux">Ryan J. Mailloux</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000283 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000283 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29274570
   |texte=   Characterization of the impact of glutaredoxin-2 (GRX2) deficiency on superoxide/hydrogen peroxide release from cardiac and liver mitochondria.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29274570" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020